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Analytical solutions for inviscid supersonic corner flows are virtually nonexistent due 
to the complexity of the interference geometry. In view of this, numerical solutions for 
swept-compressive and swept-expansive corner flows are obtained. The governing 
equations are written in strong conservation-law form and are solved iteratively in 
nonorthogonal conical coordinates by use of a second-order, shock-capturing, finite- 
difference technique. The computed wave structure and surface pressure distributions 
are compared with high Reynolds number (Re > 3 x lOa) experimental data and show 
very good agreement. The results clearly show that supersonic corner flow at reasonably 
high Reynolds numbers including the effect of sweep is dominated by the inviscid field. 

The three-dimensional supersonic flow produced by two intersecting wedges 
has received considerable study in the past decade. This type of flow occurs in 
supersonic inlet systems, at wing-body juctures and numerous other places where 
at least two surfaces intersect. The interference flow produced near these inter- 
sections usually results in significant rises in heat transfer and skin friction. 

Charwat and Redekopp [I] conducted experiments on the corner flow produced 
by two intersecting 12.2” wedges at a free-stream Mach No. of 3.17. The resulting 
wave structure showed that the two wedge shocks do not intersect but are joined 
by a third corner shock. Korkegi [2] more recently predicted that the most general 
case consists of a corner shock joining the two wedge shocks. Watson and 
Weinstein [3] made measurements on a similar configuration at Mach 20. Measure- 
ments of surface heating rates, pressure, and the viscous-inviscid interaction were 
made by Cresci [4] and Stainback [5, 61 for hypersonic flows. In more recent 
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SUPERSONIC CORNER FLOW 161 

publications, experimental data were obtained for the corner flow problem by 
West and Korkegi [7] at Mach 3 for wedge angles of 9.5” and very high Reynolds 
numbers (0.4 to 60 x 106). This high Reynolds number data produced an 
improved picture of the inviscid wave structure in the corner because the flow 
was turbulent. The flow structure predicted by West and Korkegi (Fig. 1) consists 
of a corner shock joining the two wedge shocks with embedded shocks emanating 
from the triple points and impinging on the wedge surfaces. In addition, two 
contact or slip surfaces join the triple points with the axial corner. These slip 
surfaces are slightly curved and asymptotically approach the bisector near the 
axial corner rather than being straight as indicated by Charwat and Redekopp. 
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FIG. 1. Wave structure in the compression-compression corner. 

Due to the complex interference flow produced in the axial corner, development 
of analytical models has been slow. Most early models of the corner flow problem 
were either incorrect or were based upon linear theory and the resulting solutions 
were inadequate [S, 91. Wallace and Clarke [8] developed a second-order iterative 
solution for corner flow. Using this method, discontinuities appeared in the 
potential functions across plane shock waves. Shortcomings of this theory also 
produced singularities in the velocity at the intersection of these shocks with the 
wedge surfaces. Goebel[9] developed an analytical model based upon experimental 
observations which has been used. However, a unique solution for the embedded 
shocks is not assured using Goebel’s results. Korkegi [lo] states that “there exists 
no adequate method of predicting even the inviscid flow structure.” Kutler [ll] 
has recently developed a numerical technique for solving the inviscid unswept 
compressive-compressive corner flow problem. 
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When the corner geometry is immersed in an inviscid supersonic free stream, 
the resulting flow field is conical because of the absence of a characteristic length 
along rays emanating from the apex. This requires that the fluid variables be 
constant along each of these rays. The steady gas dynamic equations are hyperbolic 
with respect to integration in the radial direction. If the equations are integrated 
along the conical rays starting from some initial surface, the results should asymp- 
totically approach the conical solution. This approach is used herein to obtain 
a solution to the corner flow problem. 

The resulting interference flow in the corner may be classified as (i) fully com- 
pressive, (ii) “mixed,” i.e., one wedge producing compression and the other 
expansion, and (iii) fully expansive, according to corner geometry. The afore- 
mentioned experimental and theoretical investigators have confined their studies 
to the fundamental, right-angled, unswept, compressive corner configuration of 
class (i), where both the intersecting and base wedges produce planar shocks. 
Study of “mixed” corner flows and swept corner flows is important in view of 
present-day flight configurations which have components that are either swept 
or form an expansive surface. Nangia [ 121 has more recently obtained experimental 
solutions for the three types of corner flows at various Mach numbers with 
particular emphasis on Mach 2 testing. His study was conducted for considerably 
higher Reynolds numbers than was the study of Charwat and Redekopp. The 
boundary layer on the model was made artificially turbulent to minimize boundary 
layer effects. 

In the present study, numerical solutions are obtained and compared with the 
experimental results of Charwat and Redekopp for (1) 1M, = 3.17, 6, = 12.2”, 
S1 = 12.2”, and A = 0”; and Nangia for (2) M, = 2, 6, = Y, 6, = 7.5”, (1 = 0”; 
(3) M, = 2, 6, = -5”, sr = 7.5”, A = 0”; (4) lkf, = 2, 6, = 5”, s, = 7.5”, 
A = 30”; and (5) M, = 2, 6, = -5”, 6, = 7.5”, A = 30”. 

II. GOVERNING PARTIAL-DIFFERENTIAL EQUATIONS 

The geometry for the swept compression-compression (8, > 0, 6, > 0) and 
swept expansion-compression corner arrangements is shown in Figs. 2 and 3. 
The origin is at the intersection of the two leading edges with x measured along 
the free-stream direction. 

The governing partial-differential equations (continuity, X, y, and z momentum) 
in a Cartesian coordinate system for a steady, inviscid, nonheatconducting and 
adiabatic flow are given by 

@E/W + (P/+-9 + (Waz) = 0, (1) 
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FIG. 2. Geometry for a swept compressiveecompressive 90” comer arrangement. 

where 

PU 
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puv ’ 

PU W 
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PV w kp -I- pw2 

where k = (y - 1)/2y and y is the specific heat ratio of the gas. 
In (l), pressure and density are made dimensionless with respect to the free- 

stream stagnation conditions and velocity with respect to the maximum adiabatic 
velocity. In order to alleviate the numerical difficulties in assigning boundary 
conditions (it is desirable to choose a coordinate system in which the body coincides 
with one of the coordinate directions), the governing equations in Cartesian space 
are transformed into nonorthogonal, conical coordinates 

5 = x, 
7j = y/(x - z tan A), 

5 = z/x, 
(2) 
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FIG. 3. Geometry for a swept compressive-expansive 90” corner arrangement. 

and rearranged in strong conservation-law form to yield the following dimension- 
less equation. 

where 

(3) 

F = C(F - 7E) + [qG tan A, 
G = r(G - [E), 

r = [(l - t tan A). 

The dimensionless form of the integrated energy equation is 

p = p(l - ZP - Y2 - W”). (4) 

Equations (3) and (4) form a system of five equations with five unknowns p, p, u, 
t), and W. 

Equation (3) is hyperbolic with respect to the 5 coordinate, and the problem 
is a well-posed initial-value problem. Solutions can be obtained by numerically 
integrating the equation with respect to the hyperbolic direction. 
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III. BOUNDARY AND INITIAL CONDITIONS 

The base and intersecting wedge surfaces are defined by a constant q and a 
constant 5, respectively. The boundary condition at the surface of each wedge 
requires that the flow be tangent to it. This yields the following boundary condi- 
tions. 

U= utan&- wtanLltan&, at the base wedge surface, 
w = u tan 13~) at the intersecting wedge surface. (5) 

At the axial corner both of Eqs. (5) are used as boundary conditions. 
Figure 4 shows the mesh system in the physical corner region. The intersection 

CONSTANT SPLANE 

FIG. 4. Mesh system in the physical corner region for a swept compression-compression 
corner. 

of constant 7 and constant t planes yields a rectangular computational region 
with grid points lying on conical rays. The size of the rectangular computational 
region is chosen such that it encompasses the wave structure in the corner. In 
Figs. 5 and 6, i = 1 corresponds to the base wedge surface, and j = 1 corresponds 
to the intersecting wedge surface. The upper boundaries in the r] and E directions 
are imax and j,, , respectively, and are chosen to fall in a region of known flow 
properties. 

Initial starting solutions are specified at each of the grid points in the com- 
putational plane. All interior points (1 < j < j,,, - 1 and 1 < i < imax - 1) 
are assigned values of the free-stream conditions given by 

pm = [l + (y - 1) Mm2/2]--v17--1, 
pm = [l + (y - 1) M,02/2]-l+-1, 

[ 
(y - 1) MW2/2 1/Z 

%= l’r(y-l)M,2/2 ’ I (6) 

II, = 0, 
w, = 0. 
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FIG. 5. Rectangular computational region encompassing the shock structure in the com- 
pression-compression corner. 
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FIG. 6. Rectangular computational region for an expansion<ompression corner. 
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Knowing the free-stream conditions and the wedge angles SB and al, the exact 
two-dimensional conditions can be calculated. In Fig. 5, along the outer boundaries 
imax and j,, exact two-dimensional solutions are specified at points 1 < i < if 
and 1 < j < j, , with the free-stream conditions applied at points if + 1 < i < im, 
and j,+l <j<jm,,. In the case of expansion-compression corner flow, 
specification of two-dimensional conditions along the outer boundaryjmax (Fig. 6) 
requires the calculation of flow variables within the expansion fan (points 
i,+l<i<i,- 1). Since the location of the wedge shock and the wedge 
expansion fan are known, if and j, are chosen such that the computational mesh 
is created to position them exactly halfway between two adjacent grid points. 
This determines the mesh intervals dq and 05. The conditions along the outer 
boundary imax and j,, are held fixed during the entire computation. 

When the expansive base wedge is swept, the two-dimensional solutions cannot 
be calculated in a closed form. Therefore, free-stream conditions are specified 
along j,,, for 1 < i ,( imax as an initial solution. At the end of each iteration 
cycle the flow variables along j max are set equal to the flow variables along 
(jmax - 1) to satisfy the zero gradient condition in the two-dimensional region. 

IV. INTEGRATION PROCEDURE 

Since the multishocked flow field is “captured” by the difference algorithm, 
the choice of the finite-difference scheme to be used is of importance. 
MacCormack’s [ 131 second-order, predictor-corrector scheme, probably the most 
efficient algorithm to use in a shock-capturing technique, was chosen. For shocks 
which propagate upwards from the body, use of a forward-predictor and backward- 
corrector algorithm yields excellent results. 

Applied to Eq. (3), it takes the form: 

where subscripts i, j refer to mesh points, the superscript n refers to integration 
steps in the 5 direction and the circumflex N refers to predictor values. This 
scheme is applied at the grid points bounded by 2 <j <j,,, - 1 and 
2 < i < imax - 1. At the surface of each wedge (j = 1, i = l), the backward 
corrector (Eq. (7b)) is not applicable as no backward grid points are available. 
Thus, a one-sided differencing scheme is used at the body by modifying the correc- 
tor (Eq. (7b)) as follows. 
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for the base wedge grid points and 

E;i”.;l = &q;, + &l - @&I$(&’ - &;,,) - (d(J&)(&, - &,;‘)] (7d) 

for the intersecting wedge grid points. Eq. (7a) remains unaltered. 
At each step of the integration procedure, it is necessary to calculate the conserva- 

tive variables F and G which are functions of the flow variables and the independent 
variables (5, ~7, g). The flow variables p, p, U, D, w are obtained by decoding the 
conservative variable E. This necessitates the solution of the following five 
simultaneous, algebraic equations. 

El = rcpu, 

E2 = r&Q + pu”), 
E, = rcpuv, 

E, = rcpuw, 

p = p(1 - u2 - 272 - w2). 

The solution of these equations is: 

v = i&/E, ) 
w = i&/E, ) 
u = {-B + (B2 - 4AC)1/2}/2A, 

p = W%k 
p = p(l - 22 - 02 - wy, 

(8) 

(9) 

where A = 1 - k; B = --i?,/~!?r ; C = k(1 - v2 - w2). The sign on the radical 
in the solution for u is taken to be positive for supersonic flows. 

After the decoding procedure, the cross-flow velocities on the body surfaces 
are overwritten to satisfy the boundary conditions given by Eq. (5). Thus, with 
the free-stream conditions as the initial starting solution, Eq. (3) is integrated 
with respect to the marching direction 5, and the flow variables are advanced 
from the initial data plane 5 = 5, to 5 = 5, + O<. At the beginning of each 
iteration cycle the current corrected flow variables are used at the initial data 
plane. The integration step size (05) is chosen to be the maximum possible value 
that yields a stable solution. As the iteration procedure converges the flow variables 
gradually approach their correct conical values. 

V. NUMERICAL RESULTS 

In this section the inviscid numerical solutions are compared with the experi- 
mental results of Charwat and Redekopp [I] and of Nangia [12]. Charwat and 
Redekopp performed their experiments for supersonic laminar flow over an 
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unswept axial corner at a Reynolds number of 2 x 106. Nangia obtained experi- 
mental results for supersonic flow over a swept axial corner including mixed 
compression-expansion. The flow was made artificially turbulent by tripping 
the boundary layer. In the comparisons that follow, a 30 x 30 rectangular grid 
was used for the numerical solutions and the computations were performed on 
an IBM 360/65 computer. 

Case 1. M, = 3.17; 6, = 12.2O; 6, = 12.2”; A = 0”. The computed shock 
and slip-surface structure is compared with the experimental results of Charwat 
and Redekopp in Fig. 7. The entire experimental wave structure is displaced 

M,= 3.17; $ = 12.2’; 6, = 12.2’ 

FIG. 7. Density contour plot in constant 1 computational plane (m = Numerical results; 
1 = Experimental results of Charwat and Redekeopp). 

outward from that of the inviscid numerical results because of the effective 
thickening of the body due to the presence of a laminar boundary layer. The 
difference in the experimental data and the inviscid numerical results suggests 
that the viscous effects are more dominant in the three-dimensional corner region 
than in the two-dimensional wedge flow region. Contrary to the observations of 
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Charwat and Redekopp, no “outer zone of disturbance” is predicted in the region 
outboard of the embedded shock. The “outer zone of disturbance” observed by 
Charwat and Redekopp is probably due to the low Reynolds number laminar 
flow of their experiment. When viewed from the origin, the conical embedded 
shock is slightly concave. The slip surfaces are slightly curved and asymptotically 
approach the bisector near the axial corner. This is contrary to the straight slip 
surfaces indicated by Charwat and Redekopp. 

A comparison of the numerical and experimental surface pressure distribution 
is shown in Fig. 8. The conical embedded shock is perpendicular to the wedge 
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FIG. 8. Pressure distribution on the intersecting wedge surface. 

surface at the impingement point in order to satisfy the surface tangency condition. 
The impingement location is marked by a rapid jump in pressure. The experimental 
impingement location is slightly inboard of the numerical prediction. 

It required 512 iterations and 20 min of CPU time to obtain a converged solution 
with the free-stream conditions as the initial starting solution. 

Case 2. M, = 2; a8 = 5”; 6, = 7.5”; (1 = 0”. Nangia has obtained experi- 
mental results at Reynolds Number 3.0 x 106/ft for this asymmetric configuration. 
A numerical solution for the same case has been obtained, and the computed 
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FIG. 10. Nondimensional pressure distribution on the base wedge surface. 
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FIG. 11. Nondimensional pressure distribution on the intersecting wedge surface. 
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FIG. 12. Pressure contour plot in constant 5 computational plane (I = Numerical results; 
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inviscid shock structure is compared with the results of Nangia in Fig. 9. The 
effective thickening of the body for turbulent flow is considerably less than that 
for laminar flow in this problem, and as a result the inviscid numerical wave 
structure compares very well with the experimental prediction. When viewed 
from the origin, the horizontal and vertical embedded shocks are slightly concave 
while the corner shock is slightly convex. 

The computed surface pressure distributions on the base and intersecting wedges 
are compared with the experimental results of Nangia in Figs. 10 and 11. In both 
cases the rapid rise in pressure (decreasing 5 and 7) corresponds to the embedded 
shock impingement location. 

The computation required 330 iterations and approximately 15 min of CPU 
time to obtain a converged solution. 

0 NUMERICAL RESULTS 

I EXPERIMENTAL RESULTS 
OF NANGIA 

M-=2; bg=-5’; 6,=7.5’ 

FIG. 13. Nondimensional pressure distribution on the base wedge surface. 

Case 3. M, = 2; a8 = -5”; 61 = 7.5”; fl = 0”. The computed wave struc- 
ture is compared with the experimental results of Nangia in Fig. 12 and shows 
very good agreement. It is interesting to note from Fig. 12 that the wave structure 
doesn’t exhibit any corner shock or slip surfaces. This appears to be correct 
because changes through the expansion fan occur isentropically. However, an 
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auxiliary compression wave in the three-dimensional corner region is predicted 
by the numerical scheme which is not seen in the experimental results. The wedge 
expansion fan, after the interaction with the wedge shock, turns away from the 
axial corner and is concave when viewed from the origin, whereas the wedge 
shock turns toward the axial corner and appears to be slightly convex. 

A comparison of the numerical and experimental nondimensional pressure 
distribution on the base wedge surface is shown in Fig. 13. The rapid change in 
the pressure marks the embedded shock impingement location. The strength of 
the shock at the impingement point is slightly more than that of the intersecting 
wedge shock. This is due to merging of the weak compression wave. 

The computed pressure distribution on the intersecting wedge surface is com- 
pared with the experimental results of Nangia in Fig. 14. The gradual drop 
(decreasing 7) in the pressure corresponds to the expansion fan, and the changes 
occur isentropically. 

It required 218 iterations and approximately 10 min of CPU time to obtain a 
converged solution. 

Case 4. AI, = 2; 6, = 5”; 6, = 7.5”; fl = 30”. Nangia [12] has obtained 
experimental (turbulent boundary layer) results at Reynolds number 3.0 x 106/ft 
for this corner configuration. A numerical solution for the same case is obtained, 
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M = 2; 6 B = - 5’; 6, = 7.5’ ce 

FIG. 14. Nondimensional pressure distribution on the intersecting wedge surface. 
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and the computed inviscid shock structure is compared with the results of Nangia 
in Fig. 15. The swept-base wedge shock and the intersecting wedge shock are 
joined by a third corner shock, with embedded shocks bounding the corner 
region. The flow structure is similar to unswept compression-compression corner 
results. The embedded shock from the upper triple point is concave when viewed 
from the origin and turns away from the axial corner, whereas the embedded 
shock from the lower triple point is straight. A set of compression fans originate 
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FIG. 15. Pressure contour plot in constant x physical plane (m = Numerical results; 
1 = Experimental results of Nangia). 

at the upper triple point and spread over the entire three-dimensional corner 
region. The wave structure indicates no presence of slip surfaces although one 
expects them to be present. 

Figures 16 and 17 show the computed surface pressure distribution on the base 
and intersecting wedges compared with the experimental results of Nangia. In 
Fig. 17 the first sharp jump (decreasing 7) corresponds to the curved horizontal 
embedded shock. This jump is followed by a gradual rise in pressure across the 
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FIG. 17. Nondimensional pressure distribution on the intersecting wedge surface. 
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FIG. 19. Nondimensional pressure distribution on the swept base wedge surface. 
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compression fan. The horizontal embedded shock is weak compared to the vertical 
embedded shock. 

It required 740 iterations and approximately 30 min of CPU time to obtain a 
converged solution. 

Case 5. M, = 2; 6, = -5”; 6, = 7.5”; A = 30”. The pressure contour plot 
shown in Fig. 18 illustrates the computed wave structure in the corner. The wedge 
expansion fan, after interacting with the wedge shock, turns away from the axial 
corner and appears to be concave when viewed from the origin. The intersecting 
wedge shock is deflected towards the axial corner under the influence of the wedge 
expansion fan. An auxiliary weak shock is formed in the three-dimensional corner 
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FIG. 20. Nondimensional pressure distribution on the intersecting wedge surface. 

region which merges with the weak embedded shock and forms a strong shock 
near the base wedge surface. The shock impingement on the base wedge surface 
is nearer the axial corner than the wedge shock. The strength of the impinging 
shock appears to increase with increasing sweep angle. Furthermore, the inter- 
ference region decreases as the sweep angle increases. 
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The computed pressure distribution on the base and intersecting wedge surfaces 
are compared with the experimental results of Nangia in Figs. 19 and 20. It required 
552 iterations to obtain a converged solution for this case. 

VI. CONCLUDING REMARKS 

The problem of swept axial corner flow has been treated. This required the 
development of a coordinate transformation which conveniently mapped the 
physical coordinate system into a suitable computational system including sweep. 
Corner flows including both compression and expansion surfaces were treated in 
this system. 

Use of the shock-capturing technique provided an accurate description of the 
wave structure for an otherwise complicated interference flow problem. The 
inviscid numerical results indicate that the wave structure in the corner at relatively 
high Reynolds numbers is determined by the inviscid flow field and the viscous 
effects result only in an effective thickening of the body which forces the wave 
structure outwards. When the boundary layer is laminar, the effective thickening 
of the body is more dominant than when the boundary layer is turbulent. Thus, 
inviscid numerical solutions agree more favorably with the experimental results 
for the turbulent case than for the laminar case. Numerical solutions to viscous 
corner flows at relatively high Reynolds numbers can be obtained by an inviscid 
analysis of the problem after suitably superimposing the effect of the boundary 
layer by incorporating it in the body thickness. 

Numerous extensions of the present work suggest themselves. A significant 
class of problems remain to be solved using the techniques discussed in the present 
paper. The most obvious problem is the solution of corner flows in which the 
wedge intersection does not form a 90” corner. This is in essence a sort of dihedral 
for obtuse angles. Perhaps of more interest is the problem of solving swept corner 
flow when the shock produced by the intersecting wedge lies outside of the leading 
edge of the base wedge. This is an off-design condition and is of considerable 
practical importance in supersonic inlet systems. A number of other extensions 
could be based upon the present analysis including flow over external corners. 
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